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Studies in Marine Macrolide Synthesis:
Stereocontrolled Synthesis of the F-Ring Subunit
of Spongistatin 1 (Altohyrtin A).

Ian Paterson* and Linda E. Keown
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

Abstract: The C3¢—Cye subunit 3, containing the F ring of spongistatin 1 (1), was prepared in
12 steps from ketone (R)-7. Key steps include: (i) the boron-mediated anti aldol reaction, 7 —
9: (ii) the Sharpless AD, 6 — 13; and (iii) an intramolecular hetero-Michael addition, followed
by base-promoted equilibration to give 3. © 1997 Elsevier Science Ltd.

The spongistatins |3 and altohyrtins# are a recently isolated group of marine macrolides, which display
remarkable potency as antimitotic agents. Their structures (e.g., 1 in Scheme 1) all feature a 42-membered
macrolide ring built up of AB and CD spiroacetal units and E and F tetrahydropyranyl rings.!-5 The
spongistatins are reported to show especially powerful growth inhibitory activity in vitro against multi-drug
resistant cancer cells and are believed to function by inhibiting tubulin polymerisation. 3
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Due to their extremely meagre natural supply, synthetic efforts towards the spongistatins/altohyrtins are
required to firmly establish the structures.6 As part of studies in this area,”-8 we have previously described’2

the synthesis of the AB-spiroacetal subunit 2 of spongistatin 1 (altohyrtin A). We now report a stereo-

controlled synthesis of the C36—Cy4q ségment 3, representing a fully functionalised core for the lower half 4.6
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As shown in the retrosynthetic analysis in Scheme 1, our strategy for the construction of the highly
substituted F ring was based on an intramolecular hetero-Michael addition of the C39-OH, as in § — 3. In this
enone cyclisation, the required C43 stereocentre was expected to result from the thermodynamic preference for
the ketone group to adopt an equatorial position in the tetrahydropyran ring (NB: all other substituents are
equatorial). We planned that the required precursor 5 would be assembled, in turn, from the anti-syn-anti
stereotetrad 6, which should be accessible using suitable asymmetric aldol methodology from the ketone 7.
Our synthesis of the F-ring subunit 3, which proceeded along these lines, is summarised in Scheme 2 and
outlined below.®

The starting ketone (R)-7 was prepared from (R)-methyl-3-hydroxy-2-methylpropionate, as previously
reported for the enantiomeric series.!02 By using the (E)-selective enolisation conditions already employed
with a number of a-chiral alkoxymethyl ketones, 19 a boron-mediated aldol reaction'! with acetaldehyde was
performed under substrate control. Thus, treatment of ketone (R)-7 with (¢- C¢H 11)2BCl (Et3N, Et;0, -78 °C)
generated the boron enolate 8, which on addition of acetaldehyde gave the 1,2-anti-2,4-anti adduct 9 with
>97% diastereoselectivity (91% yield). Hydroxyl-directed reduction !2 of 9 using Me4N+BH(OAc); then gave
the required stereotetrad 10, obtained as the major isomer with 80% diastereoselectivity.!3 Next, acetonide
formation gave 11, where !3C NMR analysis!4 was used to confirm the 1,3-anti diol reduction
stereochemistry. Removal of the para-methoxybenzyl (PMB) group using DDQ!3 followed by Swern
oxidation gave the aldehyde 12 (86%), which was chain extended by a HWE olefination,!® with
(MeO)>,POCH,CO;Me (‘PraNEt, LiCl, MeCN), to give exclusively the (E)-alkene 6 in 88% yield.

The C4; and C4; stereocentres were then introduced into alkene 6 using the Sharpless asymmetric
dihydroxylation.!7 This reagent-controlled reaction was carried out in aqueous ‘BuOH using freshly prepared,
enriched AD-mix- B [(DHQD),PHAL (4 mol%), K20s02(OH)4 (1 mol%), K3Fe(CN)g, K2oCO3]17b with added
MeSO;NH3,, providing the diol 13 in 98% yield with excellent stereoselectivity (>97% ds). The resulting
hydroxyl groups were then protected as their $-(trimethylsilyl)ethoxymethyl (SEM) ethers!8 to give 14in 97%
yield. After reduction of ester 14 into the corresponding aldehyde using DIBAL (-100 °C, CH2Cly),
conversion into the methyl ketone 15 was carried out by means of a HWE olefination with
(Me0),POCH,COMe mediated by activated Ba(OH)» (aq. THF, 20 °C).!9 Notably, these mild reaction
conditions provided the required (E)-enone 15 in high yield (96%) without any detectable epimerisation.

At this stage, we were ready to explore the selectivity in the hetero-Michael reaction triggered by
removal of the acetonide from 15. Under acidic conditions, the generated diol cyclised in situ to give the
epimeric tetrahydropyrans 16 and 3 as a 2.5 : 1 mixture, with the minor component having the desired C43
configuration. A wide range of bases (e.g., NaOMe, KO’Bu, DBU) and reaction conditions were screened for
equilibration of this mixture. Eventually, we found that by treatment of the mixture of ketones 16 and 3 with
Triton methoxide20 (THF, 0 °C, 1 h), the required isomer 3 could be obtained in 70% overall yield. The
stereochemistry of 3 was confirmed using a combination of 2D NMR techniques.® In particular, a strong nOe
was observed between the axial protons at the C39 and C43 positions of the tetrahydropyran ring.

In summary, this synthesis of the C36—C4e subunit 3 of spongistatin 1 (altohyrtin A), incorporating the
F ring, proceeds in 12 steps (28% yield) from the chiral ketone (R)-7. We have also used this route to prepare
the enantiomer of 3 by starting with (S)-7 and employing AD-mix-«.® Studies directed towards the synthesis

of the CD spiroacetal and the E ring of spongistatin 1 (1) are currently underway.
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Scheme 2: (a) (c<C6H|1)2BCl, Ei3N, Etz0, ~78 °C, 3 h; MeCHO, ~78 — ~20 °C, 16 h; (b) Me4NeHB(OAc)3, AcOH,
MeCN, -30 — 20 °C, 23 h; (c) (MeO) 2CMe 2, PPTS, CH;Cly, 20 °C, 24 h; (d) DDQ, CH2Cly, Hy0, 20°C, 1 h: (e) (COCl),
DMSO, CHClp, -78°C, 1 h; Et3N, ~25 °C, 1 h; (f) (MeO),POCHC0 yMe, i-PryNEL, LiCl, MeCN, 20 °C, 17 h; (g) AD-mix-
B [((DHQD); PHAL (4 mol%), K20s02(OH)g (1 mol%), K 3Fe(CN)g, K2003], MeSO,NHy, +-BuOH, H20, 20 °C, 17 b; (k)
Me3Si(CH2)20CH, Cl, i-PraNEt, CHCly, 40 °C, 24 h; (i) DIBAL, CHzCly, -100 °C, 1 h; (j) Ba(OH);eHy0,
(MeOY, POCH COMe, THF, H30, 20 °C, 22 h; (k) AcOH, THF, Hy O (9:1:1), 20 °C, 19 h; (/) BaNMe3 OMe (40% wt. soln. in

MeOH), THF, 0 °C, | h.
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